A LEVEL PHYSICS

WORKED SOLUTIONS

7.3. Electric Fields MCQ

Two parallel metal plates of separation a carry equal and opposite charges.

Which graph best represents how the electric field strength E varies with the distance x in the space between the two plates?

Α •

Electric field is constant

В

C O

D o

A particle of mass m and charge q is accelerated through a potential difference V over a distance

What is the average acceleration of the particle?

$$\mathbf{A} = \frac{qV}{m\dot{\alpha}}$$

$$F = \frac{E}{d} = \frac{Vq}{d}$$

$$\mathbf{B} \quad \frac{mV}{qd}$$

$$\mathbf{c} = \frac{V}{mqd}$$

ma =
$$\frac{\sqrt{9}}{d}$$

$$\mathbf{D} \quad \frac{dV}{mq}$$

(Total 1 mark)

3.

An electron on the surface of the Earth is placed in an electric field of strength 5000 N C⁻¹.

What is $\left(\frac{electric\ force}{electron}\right)$ for the electron?

A
$$1.1 \times 10^{-14}$$

$$\frac{F_E}{F_g} = \frac{QE}{(G_WM/r^2)} = \frac{QEr^2}{G_WM}$$

B
$$2.9 \times 10^{-10}$$

 3.4×10^9

$$\frac{F_{E}}{F_{g}} = \frac{1.60 \times 10^{11} \times 5000 \times (6.37 \times 10^{6})^{2}}{6.67 \times 10^{11} \times 9.11 \times 10^{31} \times 5.97 \times 10^{34}}$$

D
$$9.0 \times 10^{13}$$

C

(Total 1 mark)

4.

An α particle makes a head-on collision with a gold nucleus containing 79 protons. The distance of closest approach of the α particle to the nucleus is 4.0×10^{-14} m.

What electrostatic force acts on the gold nucleus when at this separation?

A
$$9.1 \times 10^{-11} \text{ N}$$

C

D
$$1.4 \times 10^{20} \text{ N}$$

290 N

$$F = \frac{2 \times 79 \times (1.60 \times 10^{-19})^2}{4 \times 15 \times 8.85 \times 10^{-12} \times (4.0 \times 10^{-14})^2}$$

F=22.7N

Two fixed parallel metal plates P and Q are at constant electrical potentials of +100 V and +70 V respectively. A proton travelling from $\bf P$ to $\bf Q$ experiences a force F due to the electric field between **P** and **Q**, and a change of potential energy of $\Delta E_{\rm p}$.

$$\Delta E_{p} = E_{Q} - E_{p}$$

$$= 70 eV - 100 eV$$

$$= -30 eV$$

Which line, **A** to **B**, in the table gives the direction of F and the value of $\Delta E_{\rm D}$?

	Direction of F	ΔE_{p}	
A	towards P	+30 eV	0
В	towards Q	+30 eV	0
С	towards Q	−30 eV	
D	towards P	−30 eV	0

(Total 1 mark)

6.

An electron moves through a distance of 0.10 m parallel to the field lines of a uniform electric field of strength 2.0 kN C⁻¹.

What is the work done on the electron?

C
$$3.2 \times 10^{-17} \text{ J}$$

D
$$1.6 \times 10^{-21} \text{ J}$$

Four positive charges are fixed at the corners of a square as shown.

The total potential at the centre of the square, a distance d from each charge, is $\frac{5Q}{4\pi\varepsilon_0 d}$

Three of the charges have a charge of +Q

What is the magnitude of the fourth charge?

A
$$-\frac{7Q}{4}$$

V= \frac{\xeq 0}{4\text{TE.d}} = \frac{50}{4\text{TE.d}}

4th change = 5Q-Q-Q-Q= 2Q

(Total 1 mark)

A charged spherical conductor has a radius r. An electric field of strength E exists at the surface due to the charge.

What is the potential of the spherical conductor?

A
$$r^2 E$$

$$E = \frac{V}{\lambda}$$

B
$$rE^2$$

$$c = \frac{E}{v}$$

$$\mathbf{D} r E$$

A conducting sphere holding a charge of +10 μ C is placed centrally inside a second uncharged conducting sphere.

Which diagram shows the electric field lines for the system?

The ionisation potential for the atoms of a gas is V. Electrons of mass m and charge e travelling at a speed v can just cause ionisation of atoms in the gas.

What is V?

В

(Total 1 mark)

An electric field acts into the plane of the paper. An electron enters the field at 90° to the field 11. lines.

The force on the electron is

Α zero. 0

В along the direction of the field. 0

C at 90° to the field.

opposite to the direction of the field.

A positive charge of 2.0×10^{-4} C is placed in an electric field at a point where the potential is +500 V.

What is the potential energy of the system?

A
$$1.0 \times 10^{-1} \text{ J}$$

B
$$1.0 \times 10^{-1} \,\mathrm{J}\,\mathrm{C}^{-1}$$

0

C
$$4.0 \times 10^{-7} \text{ J}$$

0

D
$$4.0 \times 10^{-7} \text{ J C}^{-1}$$

$$= 1.0 \times 10^{-1} \text{ }^{2} \times 500$$

$$= 1.0 \times 10^{-1} \times 500$$

Which diagram shows lines of equipotential in steps of equal potential difference near an isolated point charge?

(Total 1 mark)

Α

В

C

D

Two fixed charges of magnitude +Q and +3Q repel each other with a force F. An additional charge of -2Q is given to each charge.

What are the magnitude and the direction of the force between the charges?

ĺ		
	Magnitude of force	Direction of force
A	<u>F</u> 3	repulsive
В	5.1	attractive
С	5.4	reputsive
D	$\frac{F}{3}$	attractive

F«	Q,	Qa
----	----	----

$$F_{1} = +Q + 3Q = 3Q^{2}$$

$$F_{2} = -Q + Q = -Q^{2}$$

$$F_{2} = -\frac{F_{1}}{3}$$

$$F_2 = -\frac{F_1}{2}$$

(Total 1 mark)

15.

At a distance L from a fixed point charge, the electric field strength is E and the electric potential is V.

What are the electric field strength and the electric potential at a distance 3L from the charge?

	Electric field strength	Electric potential
A	E 3	9
В	E 3	$\frac{V}{3}$
С	<u>E</u> 9	$\frac{V}{3}$
D	<u>E</u> 9	V 9

0

0

$$\therefore \frac{E}{3^2} = \frac{E}{9}$$

$$\therefore \frac{\sqrt{3}}{3}$$

The diagram shows a particle with charge +Q and a particle with charge -Q separated by a distance d.

The particles exert a force F on each other.

An additional charge of +2Q is then given to each particle and their separation is increased to 2d.

What is the force that now acts between the particles?

A an attractive force of
$$\frac{9}{2}F$$

B an attractive force of
$$\frac{9}{4}F$$

F =
$$+Q.-Q/J^2 = -Q^2/J^2$$

C a repulsive force of
$$\frac{3}{2}F$$

$$F_2 = +3Q. + Q/2 d^2 = + \frac{3Q^2}{4J^2}$$

D a repulsive force of
$$\frac{3}{4}F$$

(Total 1 mark)

Two protons are separated by distance r. 17.

The electrostatic force between the two protons is **X** times the gravitational force between them.

What is the best estimate for X?

$$F_{\theta} = \sqrt{\frac{10^{-11} \times (10^{-27})^{2}}{10^{-2}}} \approx \frac{10^{-65}}{10^{-2}}$$

$$F_{\rm E}/F_{\rm g} = 10^{-28}/_{10}^{-65} \approx 10^{37} \text{ (very rough)}$$

Two parallel metal plates separated by a distance d have a potential difference V across them. A particle with charge Q is placed midway between the plates.

What is the magnitude of the electrostatic force acting on the particle?

A zero

0

 $B = \frac{QV}{2d}$

- 0
- F = EQ $E = \frac{V}{\lambda}$

 $c \frac{QV}{d}$

- 0

F=<u>VQ</u>

(Total 1 mark)

Two charged particles **P** and **Q** are separated by a distance of 120 mm. **X** is a point on the line between **P** and **Q** where the electric potential is zero.

What is the distance from P to X?

- V~Q
- Vp + VQ = 0
- Vp = -VQ

A 40 mm

0

B 48 mm

- 0
- $Q_{p} = Q_{Q}$
- Qpr-Qpx=-Qax

C 60 mm

0

 $\times (Q_p - Q_Q) = Q_p - C$

D 72 mm

- $x = \frac{-6 \times 120}{-6 4}$

(Total 1 mark)

= 720 = 72 mm

An isolated spherical conductor is charged.

The conductor has a radius R and an electric potential V. The electric field strength at its surface is E.

Point **T** is a distance 2R from the surface.

What are the electric field strength and electric potential at T?

	Electric field strength	Electric potential	
A	E 2	V/4	$ = E \times \frac{1}{r^2} \therefore \frac{E}{r^2} = \frac{E}{r^2}$
В	E 3	<u>V</u>	ت 3 ² 9
С	E 4	<u>v</u>	
D	<u>E</u> 9	$\frac{V}{3}$	

(Total 1 mark)

21.

O is the centre of a negatively charged sphere.

K and **L** are two points at a distance r_1 from **O**.

M and **N** are two points at a distance r_2 from **O**.

Which statement is true?

- A The work done moving an electron from **M** to **K** is the same as that done moving an electron from **K** to **L**.
- 0
- The work done moving a positron from **K** to **M** is the same as that done moving an electron from **K** to **M**.

C No work is done moving an electron from **M** to **N**.

hat △V=0

D No work is done moving a positron from **L** to **N**.

(Total 1 mark)

22.

A small object of mass m has a charge Q. The object remains stationary in an evacuated space between two horizontal plates. The plates are separated by a distance d and the potential difference between the plates is V.

What is V?

$$A \quad \frac{mQg}{d}$$

$$\frac{\mathsf{B}}{\mathsf{Q}}$$

$$c \frac{mQ}{d}$$

$$D = \frac{md}{Q}$$

1.5 mJ of work is done when a charge of 30 μ C is moved between two points, ${\bf M}$ and ${\bf N}$, in an electric field.

What is the potential difference between **M** and **N**?

$$\Delta V = \frac{\Delta W}{Q} = \frac{1.5 \times 10^{-6}}{30 \times 10^{-6}}$$

В 20 V

45 V

D 50 V

(Total 1 mark)

A parallel-plate capacitor is fully charged and then disconnected from the power supply. A dielectric is then inserted between the plates.

Which row correctly identifies the charge on the plates and the electric field strength between the plates?

	Charge	Electric field strength	
A	Stays the same	Increases	0
В	Increases	Decreases	0
С	Increases	Increases	0
D	Stays the same	Decreases	•

(Total 1 mark)

Dielectric reducer the electric field between the two charged plater, but does not change the charge.