A LEVEL PHYSICS

WORKED SOLUTIONS

7.3. Electric Fields MCQ

1. Two parallel metal plates of separation a carry equal and opposite charges.

Which graph best represents how the electric field strength E varies with the distance x in the space between the two plates?

A Eletric field is coustant
B 0

C 0

D $\quad 0$
2. A particle of mass m and charge q is accelerated through a potential difference V over a distance d.

What is the average acceleration of the particle?
A $\frac{q V}{m d}$

B $\frac{m V}{q d}$ \square

$$
\begin{gathered}
F=m_{a} \quad F=\frac{E}{d}=\frac{v_{q}}{d} \\
m_{a}=\frac{v_{q}}{d} \\
a=\frac{v_{q}}{m d}
\end{gathered}
$$

C $\frac{V}{m q d}$
0

D $\frac{d V}{m q}$
3. An electron on the surface of the Earth is placed in an electric field of strength $5000 \mathrm{~N} \mathrm{C}^{-1}$.

What is $\left(\frac{\text { electric force }}{\text { gravitational force }}\right)$ for the electron?

4.

An α particle makes a head-on collision with a gold nucleus containing 79 protons. The distance of closest approach of the α particle to the nucleus is $4.0 \times 10^{-14} \mathrm{~m}$.

What electrostatic force acts on the gold nucleus when at this separation?

5. Two fixed parallel metal plates \mathbf{P} and \mathbf{Q} are at constant electrical potentials of +100 V and +70 V respectively. A proton travelling from \mathbf{P} to \mathbf{Q} experiences a force F due to the electric field between \mathbf{P} and \mathbf{Q}, and a change of potential energy of ΔE_{p}.

$$
\begin{aligned}
\Delta E_{p} & =E_{Q}-E_{p} \\
& =70 \mathrm{eV}-100 \mathrm{eV} \\
& =-30 \mathrm{eV}
\end{aligned}
$$

Which line, \mathbf{A} to \mathbf{B}, in the table gives the direction of F and the value of ΔE_{p} ?

	Direction of \boldsymbol{F}	$\Delta E_{\mathbf{p}}$	
A	towards P	$+30 \mathbf{V}$	0
B	towards Q	+30 eV	0
C	towards Q	-30 eV	\square
D	towzds P	-30 eV	0

(Total 1 mark)
6. An electron moves through a distance of 0.10 m parallel to the field lines of a uniform electric
field of strength $2.0 \mathrm{kN} \mathrm{C}^{-1}$.

What is the work done on the electron?

$$
W=F_{s} \quad F=E Q
$$

A zero
0

B $1.6 \times 10^{-17} \mathrm{~J}$
0
$W=E Q s$

C $3.2 \times 10^{-17} \mathrm{~J}$

D $1.6 \times 10^{-21} \mathrm{~J}$

$W=2000 \times 1.60 \times 10^{-19} \times 0.10$
$W=3.2 \times 10^{-17} \mathrm{~J}$
(Total 1 mark)
7. Four positive charges are fixed at the corners of a square as shown.

The total potential at the centre of the square, a distance d from each charge, is $\frac{5 Q}{4 \pi \varepsilon_{0} d}$
Three of the charges have a charge of $+Q$
What is the magnitude of the fourth charge?

$$
V=\frac{\pi}{4 \pi \varepsilon_{0} d}
$$

A $-\frac{7 Q}{4}$
0
$V_{T}=\frac{\sum Q}{4 \pi \varepsilon_{0} d}=\frac{5 Q}{4 \pi \varepsilon_{0} d}$
\bigcirc $\Sigma Q=5 Q$
C $\quad \sqrt{ } 2 Q$
\bigcirc
D $2 Q$

$4^{\text {th }}$ charge $=5 Q-Q-Q-Q=2 Q$
8. A charged spherical conductor has a radius r. An electric field of strength E exists at the surface due to the charge.

What is the potential of the spherical conductor?
A $r^{2} E$
0
$E=\frac{V}{d}$
B $r E^{2}$
0
C $\frac{E}{r}$
0
$V=E d=r E$
D $r E$
0
9. A conducting sphere holding a charge of $+10 \mu \mathrm{C}$ is placed centrally inside a second uncharged conducting sphere.

Which diagram shows the electric field lines for the system?

10.

The ionisation potential for the atoms of a gas is V. Electrons of mass m and charge e travelling at a speed v can just cause ionisation of atoms in the gas.

What is V ?
laverase ' v '

B $\frac{2 e V}{m}$
0

$$
V=\frac{E_{K}}{Q} \text { dolmens bye oestrous }
$$

C $\sqrt{\frac{e V}{2 m}}$ \square

$$
\begin{aligned}
& V=\frac{\frac{1}{2} m v^{2}}{e} \\
& 2 e V=m v^{2}
\end{aligned}
$$

D $\sqrt{\frac{2 e V}{m}}$

$$
v=\sqrt{\frac{2 v V}{m}}
$$

(Total 1 mark)
11.

An electric field acts into the plane of the paper. An electron enters the field at 90° to the field lines.

The force on the electron is

A zero. \square

B along the direction of the field.

C at 90° to the field. \square

D opposite to the direction of the field.
(Total 1 mark)

\therefore fore on -re cutin must be opposite
12. A positive charge of $2.0 \times 10^{-4} \mathrm{C}$ is placed in an electric field at a point where the potential is +500 V .

What is the potential energy of the system?
A $1.0 \times 10^{-1} \mathrm{~J}$

$E_{p}=Q V$
$=2.0 \times 10^{-4} \times 500$
$=1.0 \times 10^{-1} \mathrm{~J}$
13. Which diagram shows lines of equipotential in steps of equal potential difference near an isolated point charge?

D

(Total 1 mark)
14. Two fixed charges of magnitude $+Q$ and $+3 Q$ repel each other with a force F. An additional charge of $-2 Q$ is given to each charge.

What are the magnitude and the direction of the force between the charges?

	Magnitude of force	Direction of force
A	$\frac{F}{3}$	repulsive
B		attractive
C	$\frac{5}{3}$	repertive
D	attractive	

$F \propto Q_{1} Q_{2}$
 $F_{2}=-Q .+Q=-Q^{2}$ $F_{2}=-\frac{F_{1}}{3}$
(Total 1 mark)
15. At a distance L from a fixed point charge, the electric field strength is E and the electric potential is V.

What are the electric field strength and the electric potential at a distance $3 L$ from the charge?

	Electric field strength	Electric potential
A	E	$\frac{V}{9}$
B	E	$\frac{V}{3}$
C	$\frac{E}{9}$	$\frac{V}{3}$
	$\frac{E}{9}$	$\frac{V}{9}$
D		

$$
\begin{aligned}
& E \propto \frac{1}{r^{2}} \quad \therefore \frac{E}{3^{2}} \\
& V \propto \frac{1}{r} \quad \therefore \frac{V}{3}
\end{aligned}
$$

$$
\therefore \frac{E}{3^{2}}=\frac{E}{9}
$$

16. The diagram shows a particle with charge $+Q$ and a particle with charge $-Q$ separated by a distance d.
The particles exert a force F on each other.

An additional charge of $+2 Q$ is then given to each particle and their separation is increased to $2 d$.
What is the force that now acts between the particles?
A an attractive force of $\frac{9}{2} F$
$F \propto Q, Q / d^{2}$
B an attractive force of $\frac{9}{4} F$
\bigcirc

$$
F_{1}=+Q .-Q / d^{2}=-Q^{2} / d^{2}
$$

C a repulsive force of $\frac{3}{2} F$

D a repulsive force of $\frac{3}{4} F$
\bullet

$$
F_{2}=+3 Q .+Q / 2 d^{2}=+\frac{3 Q^{2}}{4 d^{2}}
$$

(Total 1 mark)
17. Two protons are separated by distance r.

The electrostatic force between the two protons is \mathbf{X} times the gravitational force between them.

18. Two parallel metal plates separated by a distance d have a potential difference V across them. A particle with charge Q is placed midway between the plates.

What is the magnitude of the electrostatic force acting on the particle?
A zero
B $\frac{Q V}{2 d}$
0
c $\frac{Q V}{d}$
D $\frac{2 Q V}{d}$

$$
F=E Q \quad E=\frac{V}{d}
$$

(Total 1 mark)
19. Two charged particles \mathbf{P} and \mathbf{Q} are separated by a distance of 120 mm .
\mathbf{X} is a point on the line between \mathbf{P} and \mathbf{Q} where the electric potential is zero.

What is the distance from P to $X ? \quad V \propto \frac{Q}{r} \quad V_{p}+V_{Q}=O \quad V_{p}=-V_{Q}$
A 40 mm
\bigcirc

B 48 mm

C 60 mm

$$
\frac{Q_{P}}{x}=\frac{-Q_{Q}}{r-x}
$$

D 72 mm

$$
\begin{aligned}
& Q_{p} r-Q_{p} x=-Q_{Q} x \\
& x\left(Q_{P}-Q_{Q}\right)=Q_{p} . r
\end{aligned}
$$

$$
x=\frac{-6 \times 120}{-6-4}
$$

An isolated spherical conductor is charged.
The conductor has a radius R and an electric potential V. The electric field strength at its surface is E.

Point \mathbf{T} is a distance $2 R$ from the surface.
What are the electric field strength and electric potential at \mathbf{T} ?

(Total 1 mark)
21.
\mathbf{O} is the centre of a negatively charged sphere.

M and N lie

on $0 n$

\mathbf{K} and \mathbf{L} are two points at a distance r_{1} from \mathbf{O}.
\mathbf{M} and \mathbf{N} are two points at a distance r_{2} from \mathbf{O}.

Which statement is true?

A The work done moving an electron from \mathbf{M} to \mathbf{K} is the same as that done moving an electron from \mathbf{K} to \mathbf{L}.

$\Delta W=Q \Delta V$
C No work is done moving an electron from \mathbf{M} to \mathbf{N}.

but $\Delta V=0$

D No work is done moving a positron from \mathbf{L} to \mathbf{N}. \square
(Total 1 mark)
22. A small object of mass m has a charge Q. The object remains stationary in an evacuated space between two horizontal plates. The plates are separated by a distance d and the potential difference between the plates is V.

What is V ?
A $\frac{m Q g}{d}$

B $\frac{m d g}{Q}$

C $\frac{m Q}{d}$

$$
V=m g d
$$

D $\frac{m d}{Q}$
(Total 1 mark)
23.
1.5 mJ of work is done when a charge of $30 \mu \mathrm{C}$ is moved between two points, \mathbf{M} and \mathbf{N}, in an electric field.

What is the potential difference between \mathbf{M} and \mathbf{N} ?

A 20 mV

B 20 V

$$
\Delta V=\Delta W=\frac{1.5 \times 10^{-3}}{30 \times 10^{-6}}
$$

C 45 V
o
$=50 \mathrm{~V}$
D 50 V
(Total 1 mark)
24. A parallel-plate capacitor is fully charged and the

Which row correctly identifies the charge on the plates and the electric field strength between the plates?

	Charge	Electric field strength	
A	Stays the same	Increases	0
B	Increases	Decreases	0
C	Increases	Increases	$\boxed{0}$
D	Stays the same	Decreases	\square

Didetric
redver the elutric fied betrien the two chaged plater, but does not clavige the charge.

